Quantile metrics evaluate predictions that consist of predicted quantiles rather than point predictions. These metrics assess the accuracy and calibration of distributional forecasts.
Input requirements
truth: numericestimate: hardhat::quantile_pred object
Available metrics
weighted_interval_score()Direction: minimize. Range: [0, Inf]
See also
numeric-metrics for point prediction metrics
vignette("metric-types") for an overview of all metric types
Examples
library(hardhat)
df <- data.frame(
preds = quantile_pred(rbind(1:4, 8:11), c(0.2, 0.4, 0.6, 0.8)),
truth = c(3.3, 7.1)
)
df
#> preds truth
#> 1 [2.5] 3.3
#> 2 [9.5] 7.1
weighted_interval_score(df, truth, preds)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 weighted_interval_score standard 1.28
