Package index
-
sens()
sens_vec()
sensitivity()
sensitivity_vec()
- Sensitivity
-
spec()
spec_vec()
specificity()
specificity_vec()
- Specificity
-
recall()
recall_vec()
- Recall
-
precision()
precision_vec()
- Precision
-
j_index()
j_index_vec()
- J-index
-
f_meas()
f_meas_vec()
- F Measure
-
accuracy()
accuracy_vec()
- Accuracy
-
bal_accuracy()
bal_accuracy_vec()
- Balanced accuracy
-
detection_prevalence()
detection_prevalence_vec()
- Detection prevalence
-
roc_auc()
roc_auc_vec()
- Area under the receiver operator curve
-
roc_aunp()
roc_aunp_vec()
- Area under the ROC curve of each class against the rest, using the a priori class distribution
-
roc_aunu()
roc_aunu_vec()
- Area under the ROC curve of each class against the rest, using the uniform class distribution
-
pr_auc()
pr_auc_vec()
- Area under the precision recall curve
-
average_precision()
average_precision_vec()
- Area under the precision recall curve
-
gain_capture()
gain_capture_vec()
- Gain capture
-
mn_log_loss()
mn_log_loss_vec()
- Mean log loss for multinomial data
-
classification_cost()
classification_cost_vec()
- Costs function for poor classification
-
brier_class()
brier_class_vec()
- Brier score for classification models
-
rmse()
rmse_vec()
- Root mean squared error
-
rsq_trad()
rsq_trad_vec()
- R squared - traditional
-
mape()
mape_vec()
- Mean absolute percent error
-
smape()
smape_vec()
- Symmetric mean absolute percentage error
-
mase()
mase_vec()
- Mean absolute scaled error
-
rpiq()
rpiq_vec()
- Ratio of performance to inter-quartile
-
huber_loss()
huber_loss_vec()
- Huber loss
-
huber_loss_pseudo()
huber_loss_pseudo_vec()
- Psuedo-Huber Loss
-
poisson_log_loss()
poisson_log_loss_vec()
- Mean log loss for Poisson data
-
new_groupwise_metric()
- Create groupwise metrics
-
demographic_parity()
- Demographic parity
-
equalized_odds()
- Equalized odds
-
equal_opportunity()
- Equal opportunity
-
brier_survival()
brier_survival_vec()
- Time-Dependent Brier score for right censored data
-
brier_survival_integrated()
brier_survival_integrated_vec()
- Integrated Brier score for right censored data
-
roc_auc_survival()
roc_auc_survival_vec()
- Time-Dependent ROC AUC for Censored Data
-
concordance_survival()
concordance_survival_vec()
- Concordance index for right-censored data
-
roc_curve_survival()
- Time-Dependent ROC surve for Censored Data
-
roc_curve()
- Receiver operator curve
-
pr_curve()
- Precision recall curve
-
gain_curve()
- Gain curve
-
lift_curve()
- Lift curve
-
metrics()
- General Function to Estimate Performance
-
metric_set()
- Combine metric functions
-
metric_tweak()
- Tweak a metric function
-
conf_mat()
tidy(<conf_mat>)
- Confusion Matrix for Categorical Data
-
summary(<conf_mat>)
- Summary Statistics for Confusion Matrices
-
numeric_metric_summarizer()
class_metric_summarizer()
prob_metric_summarizer()
curve_metric_summarizer()
dynamic_survival_metric_summarizer()
static_survival_metric_summarizer()
curve_survival_metric_summarizer()
- Developer function for summarizing new metrics
-
check_numeric_metric()
check_class_metric()
check_prob_metric()
check_dynamic_survival_metric()
check_static_survival_metric()
- Developer function for checking inputs in new metrics
-
yardstick_remove_missing()
yardstick_any_missing()
- Developer function for handling missing values in new metrics
-
dots_to_estimate()
get_weights()
finalize_estimator()
finalize_estimator_internal()
validate_estimator()
- Developer helpers
-
new_class_metric()
new_prob_metric()
new_numeric_metric()
new_dynamic_survival_metric()
new_integrated_survival_metric()
new_static_survival_metric()
- Construct a new metric function
-
hpc_cv
- Multiclass Probability Predictions
-
lung_surv
- Survival Analysis Results
-
pathology
- Liver Pathology Data
-
solubility_test
- Solubility Predictions from MARS Model
-
two_class_example
- Two Class Predictions