Calculate the loss function for the Poisson distribution.
Usage
poisson_log_loss(data, ...)
# S3 method for class 'data.frame'
poisson_log_loss(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
poisson_log_loss_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
Arguments
- data
A
data.frame
containing the columns specified by thetruth
andestimate
arguments.- ...
Not currently used.
- truth
The column identifier for the true counts (that is
integer
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, aninteger
vector.- estimate
The column identifier for the predicted results (that is also
numeric
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, anumeric
vector.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For poisson_log_loss_vec()
, a single numeric
value (or NA
).
Examples
count_truth <- c(2L, 7L, 1L, 1L, 0L, 3L)
count_pred <- c(2.14, 5.35, 1.65, 1.56, 1.3, 2.71)
count_results <- dplyr::tibble(count = count_truth, pred = count_pred)
# Supply truth and predictions as bare column names
poisson_log_loss(count_results, count, pred)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 poisson_log_loss standard 1.42