Calculate the mean absolute percentage error. This metric is in relative units.
Usage
mape(data, ...)
# S3 method for class 'data.frame'
mape(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
mape_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
Arguments
- data
A
data.frame
containing the columns specified by thetruth
andestimate
arguments.- ...
Not currently used.
- truth
The column identifier for the true results (that is
numeric
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, anumeric
vector.- estimate
The column identifier for the predicted results (that is also
numeric
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, anumeric
vector.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For mape_vec()
, a single numeric
value (or NA
).
See also
Other numeric metrics:
ccc()
,
huber_loss()
,
huber_loss_pseudo()
,
iic()
,
mae()
,
mase()
,
mpe()
,
msd()
,
poisson_log_loss()
,
rmse()
,
rpd()
,
rpiq()
,
rsq()
,
rsq_trad()
,
smape()
Other accuracy metrics:
ccc()
,
huber_loss()
,
huber_loss_pseudo()
,
iic()
,
mae()
,
mase()
,
mpe()
,
msd()
,
poisson_log_loss()
,
rmse()
,
smape()
Examples
# Supply truth and predictions as bare column names
mape(solubility_test, solubility, prediction)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 mape standard Inf
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(
replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE
),
.id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
group_by(resample) %>%
mape(solubility, prediction)
metric_results
#> # A tibble: 10 × 4
#> resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 1 mape standard Inf
#> 2 10 mape standard Inf
#> 3 2 mape standard Inf
#> 4 3 mape standard 28.5
#> 5 4 mape standard 95.3
#> 6 5 mape standard Inf
#> 7 6 mape standard 73.1
#> 8 7 mape standard Inf
#> 9 8 mape standard Inf
#> 10 9 mape standard 37.9
# Resampled mean estimate
metric_results %>%
summarise(avg_estimate = mean(.estimate))
#> # A tibble: 1 × 1
#> avg_estimate
#> <dbl>
#> 1 Inf