Calculate the coefficient of determination using correlation. For the
traditional measure of R squared, see rsq_trad()
.
Usage
rsq(data, ...)
# S3 method for class 'data.frame'
rsq(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
rsq_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
Arguments
- data
A
data.frame
containing the columns specified by thetruth
andestimate
arguments.- ...
Not currently used.
- truth
The column identifier for the true results (that is
numeric
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, anumeric
vector.- estimate
The column identifier for the predicted results (that is also
numeric
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, anumeric
vector.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For rsq_vec()
, a single numeric
value (or NA
).
Details
The two estimates for the
coefficient of determination, rsq()
and rsq_trad()
, differ by
their formula. The former guarantees a value on (0, 1) while the
latter can generate inaccurate values when the model is
non-informative (see the examples). Both are measures of
consistency/correlation and not of accuracy.
rsq()
is simply the squared correlation between truth
and estimate
.
Because rsq()
internally computes a correlation, if either truth
or
estimate
are constant it can result in a divide by zero error. In these
cases, a warning is thrown and NA
is returned. This can occur when a model
predicts a single value for all samples. For example, a regularized model
that eliminates all predictors except for the intercept would do this.
Another example would be a CART model that contains no splits.
References
Kvalseth. Cautionary note about \(R^2\). American Statistician (1985) vol. 39 (4) pp. 279-285.
Examples
# Supply truth and predictions as bare column names
rsq(solubility_test, solubility, prediction)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rsq standard 0.879
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(
replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE
),
.id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
group_by(resample) %>%
rsq(solubility, prediction)
metric_results
#> # A tibble: 10 × 4
#> resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 1 rsq standard 0.874
#> 2 10 rsq standard 0.879
#> 3 2 rsq standard 0.891
#> 4 3 rsq standard 0.916
#> 5 4 rsq standard 0.892
#> 6 5 rsq standard 0.858
#> 7 6 rsq standard 0.873
#> 8 7 rsq standard 0.852
#> 9 8 rsq standard 0.915
#> 10 9 rsq standard 0.884
# Resampled mean estimate
metric_results %>%
summarise(avg_estimate = mean(.estimate))
#> # A tibble: 1 × 1
#> avg_estimate
#> <dbl>
#> 1 0.883
# With uninformitive data, the traditional version of R^2 can return
# negative values.
set.seed(2291)
solubility_test$randomized <- sample(solubility_test$prediction)
rsq(solubility_test, solubility, randomized)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rsq standard 0.00199
rsq_trad(solubility_test, solubility, randomized)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rsq_trad standard -1.01
# A constant `truth` or `estimate` vector results in a warning from
# a divide by zero error in the correlation calculation.
# `NA` will be returned in these cases.
truth <- c(1, 2)
estimate <- c(1, 1)
rsq_vec(truth, estimate)
#> Warning: A correlation computation is required, but `estimate` is constant and has
#> 0 standard deviation, resulting in a divide by 0 error. `NA` will be
#> returned.
#> [1] NA