Calculate the concordance correlation coefficient.
Usage
ccc(data, ...)
# S3 method for class 'data.frame'
ccc(
data,
truth,
estimate,
bias = FALSE,
na_rm = TRUE,
case_weights = NULL,
...
)
ccc_vec(truth, estimate, bias = FALSE, na_rm = TRUE, case_weights = NULL, ...)Arguments
- data
A
data.framecontaining the columns specified by thetruthandestimatearguments.- ...
Not currently used.
- truth
The column identifier for the true results (that is
numeric). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()functions, anumericvector.- estimate
The column identifier for the predicted results (that is also
numeric). As withtruththis can be specified different ways but the primary method is to use an unquoted variable name. For_vec()functions, anumericvector.- bias
A
logical; should the biased estimate of variance be used (as is Lin (1989))?- na_rm
A
logicalvalue indicating whetherNAvalues should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data. For_vec()functions, a numeric vector,hardhat::importance_weights(), orhardhat::frequency_weights().
Value
A tibble with columns .metric, .estimator,
and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For ccc_vec(), a single numeric value (or NA).
Details
ccc() is a metric of both consistency/correlation and accuracy,
while metrics such as rmse() are strictly for accuracy and metrics
such as rsq() are strictly for consistency/correlation
References
Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45 (1), 255-268.
Nickerson, C. (1997). A note on "A concordance correlation coefficient to evaluate reproducibility". Biometrics, 53(4), 1503-1507.
See also
Other numeric metrics:
huber_loss(),
huber_loss_pseudo(),
iic(),
mae(),
mape(),
mase(),
mpe(),
msd(),
poisson_log_loss(),
rmse(),
rpd(),
rpiq(),
rsq(),
rsq_trad(),
smape()
Other consistency metrics:
rpd(),
rpiq(),
rsq(),
rsq_trad()
Other accuracy metrics:
huber_loss(),
huber_loss_pseudo(),
iic(),
mae(),
mape(),
mase(),
mpe(),
msd(),
poisson_log_loss(),
rmse(),
smape()
Examples
# Supply truth and predictions as bare column names
ccc(solubility_test, solubility, prediction)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 ccc standard 0.937
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(
replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE
),
.id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled |>
group_by(resample) |>
ccc(solubility, prediction)
metric_results
#> # A tibble: 10 × 4
#> resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 1 ccc standard 0.935
#> 2 10 ccc standard 0.937
#> 3 2 ccc standard 0.943
#> 4 3 ccc standard 0.956
#> 5 4 ccc standard 0.944
#> 6 5 ccc standard 0.925
#> 7 6 ccc standard 0.933
#> 8 7 ccc standard 0.922
#> 9 8 ccc standard 0.955
#> 10 9 ccc standard 0.940
# Resampled mean estimate
metric_results |>
summarise(avg_estimate = mean(.estimate))
#> # A tibble: 1 × 1
#> avg_estimate
#> <dbl>
#> 1 0.939
