Calculate the Pseudo-Huber Loss, a smooth approximation of huber_loss()
.
Like huber_loss()
, this is less sensitive to outliers than rmse()
.
Usage
huber_loss_pseudo(data, ...)
# S3 method for class 'data.frame'
huber_loss_pseudo(
data,
truth,
estimate,
delta = 1,
na_rm = TRUE,
case_weights = NULL,
...
)
huber_loss_pseudo_vec(
truth,
estimate,
delta = 1,
na_rm = TRUE,
case_weights = NULL,
...
)
Arguments
- data
A
data.frame
containing the columns specified by thetruth
andestimate
arguments.- ...
Not currently used.
- truth
The column identifier for the true results (that is
numeric
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, anumeric
vector.- estimate
The column identifier for the predicted results (that is also
numeric
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, anumeric
vector.- delta
A single
numeric
value. Defines the boundary where the loss function transitions from quadratic to linear. Defaults to 1.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For huber_loss_pseudo_vec()
, a single numeric
value (or NA
).
References
Huber, P. (1964). Robust Estimation of a Location Parameter. Annals of Statistics, 53 (1), 73-101.
Hartley, Richard (2004). Multiple View Geometry in Computer Vision. (Second Edition). Page 619.
Examples
# Supply truth and predictions as bare column names
huber_loss_pseudo(solubility_test, solubility, prediction)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 huber_loss_pseudo standard 0.199
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(
replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE
),
.id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
group_by(resample) %>%
huber_loss_pseudo(solubility, prediction)
metric_results
#> # A tibble: 10 × 4
#> resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 1 huber_loss_pseudo standard 0.185
#> 2 10 huber_loss_pseudo standard 0.179
#> 3 2 huber_loss_pseudo standard 0.196
#> 4 3 huber_loss_pseudo standard 0.168
#> 5 4 huber_loss_pseudo standard 0.212
#> 6 5 huber_loss_pseudo standard 0.177
#> 7 6 huber_loss_pseudo standard 0.246
#> 8 7 huber_loss_pseudo standard 0.227
#> 9 8 huber_loss_pseudo standard 0.161
#> 10 9 huber_loss_pseudo standard 0.188
# Resampled mean estimate
metric_results %>%
summarise(avg_estimate = mean(.estimate))
#> # A tibble: 1 × 1
#> avg_estimate
#> <dbl>
#> 1 0.194