Mean signed deviation (also known as mean signed difference, or mean signed
error) computes the average differences between truth
and estimate
. A
related metric is the mean absolute error (mae()
).
Usage
msd(data, ...)
# S3 method for class 'data.frame'
msd(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
msd_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
Arguments
- data
A
data.frame
containing the columns specified by thetruth
andestimate
arguments.- ...
Not currently used.
- truth
The column identifier for the true results (that is
numeric
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, anumeric
vector.- estimate
The column identifier for the predicted results (that is also
numeric
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, anumeric
vector.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For msd_vec()
, a single numeric
value (or NA
).
Details
Mean signed deviation is rarely used, since positive and negative errors
cancel each other out. For example, msd_vec(c(100, -100), c(0, 0))
would
return a seemingly "perfect" value of 0
, even though estimate
is wildly
different from truth
. mae()
attempts to remedy this by taking the
absolute value of the differences before computing the mean.
This metric is computed as mean(truth - estimate)
, following the convention
that an "error" is computed as observed - predicted
. If you expected this
metric to be computed as mean(estimate - truth)
, reverse the sign of the
result.
See also
Other numeric metrics:
ccc()
,
huber_loss()
,
huber_loss_pseudo()
,
iic()
,
mae()
,
mape()
,
mase()
,
mpe()
,
poisson_log_loss()
,
rmse()
,
rpd()
,
rpiq()
,
rsq()
,
rsq_trad()
,
smape()
Other accuracy metrics:
ccc()
,
huber_loss()
,
huber_loss_pseudo()
,
iic()
,
mae()
,
mape()
,
mase()
,
mpe()
,
poisson_log_loss()
,
rmse()
,
smape()
Examples
# Supply truth and predictions as bare column names
msd(solubility_test, solubility, prediction)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 msd standard -0.0143
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(
replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE
),
.id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
group_by(resample) %>%
msd(solubility, prediction)
metric_results
#> # A tibble: 10 × 4
#> resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 1 msd standard -0.0119
#> 2 10 msd standard -0.0424
#> 3 2 msd standard 0.0111
#> 4 3 msd standard -0.0906
#> 5 4 msd standard -0.0859
#> 6 5 msd standard -0.0301
#> 7 6 msd standard -0.0132
#> 8 7 msd standard -0.00640
#> 9 8 msd standard -0.000697
#> 10 9 msd standard -0.0399
# Resampled mean estimate
metric_results %>%
summarise(avg_estimate = mean(.estimate))
#> # A tibble: 1 × 1
#> avg_estimate
#> <dbl>
#> 1 -0.0310