Calculate the mean percentage error. This metric is in relative
units. It can be used as a measure of the estimate
's bias.
Note that if any truth
values are 0
, a value of:
-Inf
(estimate > 0
), Inf
(estimate < 0
), or NaN
(estimate == 0
)
is returned for mpe()
.
Usage
mpe(data, ...)
# S3 method for class 'data.frame'
mpe(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
mpe_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
Arguments
- data
A
data.frame
containing the columns specified by thetruth
andestimate
arguments.- ...
Not currently used.
- truth
The column identifier for the true results (that is
numeric
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, anumeric
vector.- estimate
The column identifier for the predicted results (that is also
numeric
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, anumeric
vector.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For mpe_vec()
, a single numeric
value (or NA
).
See also
Other numeric metrics:
ccc()
,
huber_loss()
,
huber_loss_pseudo()
,
iic()
,
mae()
,
mape()
,
mase()
,
msd()
,
poisson_log_loss()
,
rmse()
,
rpd()
,
rpiq()
,
rsq()
,
rsq_trad()
,
smape()
Other accuracy metrics:
ccc()
,
huber_loss()
,
huber_loss_pseudo()
,
iic()
,
mae()
,
mape()
,
mase()
,
msd()
,
poisson_log_loss()
,
rmse()
,
smape()
Examples
# `solubility_test$solubility` has zero values with corresponding
# `$prediction` values that are negative. By definition, this causes `Inf`
# to be returned from `mpe()`.
solubility_test[solubility_test$solubility == 0, ]
#> solubility prediction
#> 17 0 -0.1532030
#> 220 0 -0.3876578
mpe(solubility_test, solubility, prediction)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 mpe standard Inf
# We'll remove the zero values for demonstration
solubility_test <- solubility_test[solubility_test$solubility != 0, ]
# Supply truth and predictions as bare column names
mpe(solubility_test, solubility, prediction)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 mpe standard 16.1
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(
replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE
),
.id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
group_by(resample) %>%
mpe(solubility, prediction)
metric_results
#> # A tibble: 10 × 4
#> resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 1 mpe standard -56.2
#> 2 10 mpe standard 50.4
#> 3 2 mpe standard -27.9
#> 4 3 mpe standard 0.470
#> 5 4 mpe standard -0.836
#> 6 5 mpe standard -35.3
#> 7 6 mpe standard 7.51
#> 8 7 mpe standard -34.5
#> 9 8 mpe standard 7.87
#> 10 9 mpe standard 14.7
# Resampled mean estimate
metric_results %>%
summarise(avg_estimate = mean(.estimate))
#> # A tibble: 1 × 1
#> avg_estimate
#> <dbl>
#> 1 -7.38