These functions calculate the sens() (sensitivity) of a measurement system
compared to a reference result (the "truth" or gold standard).
Highly related functions are spec(), ppv(), and npv().
Usage
sens(data, ...)
# S3 method for class 'data.frame'
sens(
  data,
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
  ...
)
sens_vec(
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
  ...
)
sensitivity(data, ...)
# S3 method for class 'data.frame'
sensitivity(
  data,
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
  ...
)
sensitivity_vec(
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  case_weights = NULL,
  event_level = yardstick_event_level(),
  ...
)Arguments
- data
- Either a - data.framecontaining the columns specified by the- truthand- estimatearguments, or a- table/- matrixwhere the true class results should be in the columns of the table.
- ...
- Not currently used. 
- truth
- The column identifier for the true class results (that is a - factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For- _vec()functions, a- factorvector.
- estimate
- The column identifier for the predicted class results (that is also - factor). As with- truththis can be specified different ways but the primary method is to use an unquoted variable name. For- _vec()functions, a- factorvector.
- estimator
- One of: - "binary",- "macro",- "macro_weighted", or- "micro"to specify the type of averaging to be done.- "binary"is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose- "binary"or- "macro"based on- estimate.
- na_rm
- A - logicalvalue indicating whether- NAvalues should be stripped before the computation proceeds.
- case_weights
- The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in - data. For- _vec()functions, a numeric vector,- hardhat::importance_weights(), or- hardhat::frequency_weights().
- event_level
- A single string. Either - "first"or- "second"to specify which level of- truthto consider as the "event". This argument is only applicable when- estimator = "binary". The default uses an internal helper that defaults to- "first".
Value
A tibble with columns .metric, .estimator,
and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For sens_vec(), a single numeric value (or NA).
Details
The sensitivity (sens()) is defined as the proportion of positive
results out of the number of samples which were actually
positive.
When the denominator of the calculation is 0, sensitivity is undefined.
This happens when both # true_positive = 0 and # false_negative = 0
are true, which mean that there were no true events. When computing binary
sensitivity, a NA value will be returned with a warning. When computing
multiclass sensitivity, the individual NA values will be removed, and the
computation will procede, with a warning.
Relevant Level
There is no common convention on which factor level should
automatically be considered the "event" or "positive" result
when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument
event_level to "second" to consider the last level of the factor the
level of interest. For multiclass extensions involving one-vs-all
comparisons (such as macro averaging), this option is ignored and
the "one" level is always the relevant result.
Multiclass
Macro, micro, and macro-weighted averaging is available for this metric.
The default is to select macro averaging if a truth factor with more
than 2 levels is provided. Otherwise, a standard binary calculation is done.
See vignette("multiclass", "yardstick") for more information.
Implementation
Suppose a 2x2 table with notation:
| Reference | ||
| Predicted | Positive | Negative | 
| Positive | A | B | 
| Negative | C | D | 
The formulas used here are:
$$Sensitivity = A/(A+C)$$ $$Specificity = D/(B+D)$$ $$Prevalence = (A+C)/(A+B+C+D)$$ $$PPV = (Sensitivity * Prevalence) / ((Sensitivity * Prevalence) + ((1-Specificity) * (1-Prevalence)))$$ $$NPV = (Specificity * (1-Prevalence)) / (((1-Sensitivity) * Prevalence) + ((Specificity) * (1-Prevalence)))$$
See the references for discussions of the statistics.
References
Altman, D.G., Bland, J.M. (1994) “Diagnostic tests 1: sensitivity and specificity,” British Medical Journal, vol 308, 1552.
Examples
# Two class
data("two_class_example")
sens(two_class_example, truth, predicted)
#> # A tibble: 1 × 3
#>   .metric .estimator .estimate
#>   <chr>   <chr>          <dbl>
#> 1 sens    binary         0.880
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv |>
  filter(Resample == "Fold01") |>
  sens(obs, pred)
#> # A tibble: 1 × 3
#>   .metric .estimator .estimate
#>   <chr>   <chr>          <dbl>
#> 1 sens    macro          0.548
# Groups are respected
hpc_cv |>
  group_by(Resample) |>
  sens(obs, pred)
#> # A tibble: 10 × 4
#>    Resample .metric .estimator .estimate
#>    <chr>    <chr>   <chr>          <dbl>
#>  1 Fold01   sens    macro          0.548
#>  2 Fold02   sens    macro          0.541
#>  3 Fold03   sens    macro          0.634
#>  4 Fold04   sens    macro          0.570
#>  5 Fold05   sens    macro          0.550
#>  6 Fold06   sens    macro          0.540
#>  7 Fold07   sens    macro          0.531
#>  8 Fold08   sens    macro          0.584
#>  9 Fold09   sens    macro          0.568
#> 10 Fold10   sens    macro          0.537
# Weighted macro averaging
hpc_cv |>
  group_by(Resample) |>
  sens(obs, pred, estimator = "macro_weighted")
#> # A tibble: 10 × 4
#>    Resample .metric .estimator     .estimate
#>    <chr>    <chr>   <chr>              <dbl>
#>  1 Fold01   sens    macro_weighted     0.726
#>  2 Fold02   sens    macro_weighted     0.712
#>  3 Fold03   sens    macro_weighted     0.758
#>  4 Fold04   sens    macro_weighted     0.712
#>  5 Fold05   sens    macro_weighted     0.712
#>  6 Fold06   sens    macro_weighted     0.697
#>  7 Fold07   sens    macro_weighted     0.675
#>  8 Fold08   sens    macro_weighted     0.721
#>  9 Fold09   sens    macro_weighted     0.673
#> 10 Fold10   sens    macro_weighted     0.699
# Vector version
sens_vec(
  two_class_example$truth,
  two_class_example$predicted
)
#> [1] 0.879845
# Making Class2 the "relevant" level
sens_vec(
  two_class_example$truth,
  two_class_example$predicted,
  event_level = "second"
)
#> [1] 0.7933884
