Detection prevalence is defined as the number of predicted positive events (both true positive and false positive) divided by the total number of predictions.
Usage
detection_prevalence(data, ...)
# S3 method for class 'data.frame'
detection_prevalence(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...
)
detection_prevalence_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...
)
Arguments
- data
Either a
data.frame
containing the columns specified by thetruth
andestimate
arguments, or atable
/matrix
where the true class results should be in the columns of the table.- ...
Not currently used.
- truth
The column identifier for the true class results (that is a
factor
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, afactor
vector.- estimate
The column identifier for the predicted class results (that is also
factor
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, afactor
vector.- estimator
One of:
"binary"
,"macro"
,"macro_weighted"
, or"micro"
to specify the type of averaging to be done."binary"
is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose"binary"
or"macro"
based onestimate
.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.- event_level
A single string. Either
"first"
or"second"
to specify which level oftruth
to consider as the "event". This argument is only applicable whenestimator = "binary"
. The default uses an internal helper that defaults to"first"
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For detection_prevalence_vec()
, a single numeric
value (or NA
).
Relevant Level
There is no common convention on which factor level should
automatically be considered the "event" or "positive" result
when computing binary classification metrics. In yardstick
, the default
is to use the first level. To alter this, change the argument
event_level
to "second"
to consider the last level of the factor the
level of interest. For multiclass extensions involving one-vs-all
comparisons (such as macro averaging), this option is ignored and
the "one" level is always the relevant result.
Multiclass
Macro, micro, and macro-weighted averaging is available for this metric.
The default is to select macro averaging if a truth
factor with more
than 2 levels is provided. Otherwise, a standard binary calculation is done.
See vignette("multiclass", "yardstick")
for more information.
Examples
# Two class
data("two_class_example")
detection_prevalence(two_class_example, truth, predicted)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 detection_prevalence binary 0.554
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
filter(Resample == "Fold01") %>%
detection_prevalence(obs, pred)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 detection_prevalence macro 0.25
# Groups are respected
hpc_cv %>%
group_by(Resample) %>%
detection_prevalence(obs, pred)
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 detection_prevalence macro 0.25
#> 2 Fold02 detection_prevalence macro 0.25
#> 3 Fold03 detection_prevalence macro 0.25
#> 4 Fold04 detection_prevalence macro 0.25
#> 5 Fold05 detection_prevalence macro 0.25
#> 6 Fold06 detection_prevalence macro 0.25
#> 7 Fold07 detection_prevalence macro 0.25
#> 8 Fold08 detection_prevalence macro 0.25
#> 9 Fold09 detection_prevalence macro 0.25
#> 10 Fold10 detection_prevalence macro 0.25
# Weighted macro averaging
hpc_cv %>%
group_by(Resample) %>%
detection_prevalence(obs, pred, estimator = "macro_weighted")
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 detection_prevalence macro_weighted 0.413
#> 2 Fold02 detection_prevalence macro_weighted 0.409
#> 3 Fold03 detection_prevalence macro_weighted 0.404
#> 4 Fold04 detection_prevalence macro_weighted 0.411
#> 5 Fold05 detection_prevalence macro_weighted 0.407
#> 6 Fold06 detection_prevalence macro_weighted 0.411
#> 7 Fold07 detection_prevalence macro_weighted 0.405
#> 8 Fold08 detection_prevalence macro_weighted 0.406
#> 9 Fold09 detection_prevalence macro_weighted 0.402
#> 10 Fold10 detection_prevalence macro_weighted 0.408
# Vector version
detection_prevalence_vec(
two_class_example$truth,
two_class_example$predicted
)
#> [1] 0.554
# Making Class2 the "relevant" level
detection_prevalence_vec(
two_class_example$truth,
two_class_example$predicted,
event_level = "second"
)
#> [1] 0.446