Youden's J statistic is defined as:
A related metric is Informedness, see the Details section for the relationship.
Usage
j_index(data, ...)
# S3 method for class 'data.frame'
j_index(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...
)
j_index_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...
)
Arguments
- data
Either a
data.frame
containing the columns specified by thetruth
andestimate
arguments, or atable
/matrix
where the true class results should be in the columns of the table.- ...
Not currently used.
- truth
The column identifier for the true class results (that is a
factor
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, afactor
vector.- estimate
The column identifier for the predicted class results (that is also
factor
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, afactor
vector.- estimator
One of:
"binary"
,"macro"
,"macro_weighted"
, or"micro"
to specify the type of averaging to be done."binary"
is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose"binary"
or"macro"
based onestimate
.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.- event_level
A single string. Either
"first"
or"second"
to specify which level oftruth
to consider as the "event". This argument is only applicable whenestimator = "binary"
. The default uses an internal helper that defaults to"first"
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For j_index_vec()
, a single numeric
value (or NA
).
Details
The value of the J-index ranges from [0, 1] and is 1
when there are
no false positives and no false negatives.
The binary version of J-index is equivalent to the binary concept of Informedness. Macro-weighted J-index is equivalent to multiclass informedness as defined in Powers, David M W (2011), equation (42).
Relevant Level
There is no common convention on which factor level should
automatically be considered the "event" or "positive" result
when computing binary classification metrics. In yardstick
, the default
is to use the first level. To alter this, change the argument
event_level
to "second"
to consider the last level of the factor the
level of interest. For multiclass extensions involving one-vs-all
comparisons (such as macro averaging), this option is ignored and
the "one" level is always the relevant result.
Multiclass
Macro, micro, and macro-weighted averaging is available for this metric.
The default is to select macro averaging if a truth
factor with more
than 2 levels is provided. Otherwise, a standard binary calculation is done.
See vignette("multiclass", "yardstick")
for more information.
References
Youden, W.J. (1950). "Index for rating diagnostic tests". Cancer. 3: 32-35.
Powers, David M W (2011). "Evaluation: From Precision, Recall and F-Score to ROC, Informedness, Markedness and Correlation". Journal of Machine Learning Technologies. 2 (1): 37-63.
Examples
# Two class
data("two_class_example")
j_index(two_class_example, truth, predicted)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 j_index binary 0.673
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv %>%
filter(Resample == "Fold01") %>%
j_index(obs, pred)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 j_index macro 0.434
# Groups are respected
hpc_cv %>%
group_by(Resample) %>%
j_index(obs, pred)
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 j_index macro 0.434
#> 2 Fold02 j_index macro 0.422
#> 3 Fold03 j_index macro 0.533
#> 4 Fold04 j_index macro 0.449
#> 5 Fold05 j_index macro 0.431
#> 6 Fold06 j_index macro 0.413
#> 7 Fold07 j_index macro 0.398
#> 8 Fold08 j_index macro 0.468
#> 9 Fold09 j_index macro 0.435
#> 10 Fold10 j_index macro 0.412
# Weighted macro averaging
hpc_cv %>%
group_by(Resample) %>%
j_index(obs, pred, estimator = "macro_weighted")
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 j_index macro_weighted 0.542
#> 2 Fold02 j_index macro_weighted 0.527
#> 3 Fold03 j_index macro_weighted 0.597
#> 4 Fold04 j_index macro_weighted 0.515
#> 5 Fold05 j_index macro_weighted 0.524
#> 6 Fold06 j_index macro_weighted 0.492
#> 7 Fold07 j_index macro_weighted 0.466
#> 8 Fold08 j_index macro_weighted 0.535
#> 9 Fold09 j_index macro_weighted 0.468
#> 10 Fold10 j_index macro_weighted 0.501
# Vector version
j_index_vec(
two_class_example$truth,
two_class_example$predicted
)
#> [1] 0.6732334
# Making Class2 the "relevant" level
j_index_vec(
two_class_example$truth,
two_class_example$predicted,
event_level = "second"
)
#> [1] 0.6732334