Matthews correlation coefficient
Usage
mcc(data, ...)
# S3 method for class 'data.frame'
mcc(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
mcc_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
Arguments
- data
Either a
data.frame
containing the columns specified by thetruth
andestimate
arguments, or atable
/matrix
where the true class results should be in the columns of the table.- ...
Not currently used.
- truth
The column identifier for the true class results (that is a
factor
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, afactor
vector.- estimate
The column identifier for the predicted class results (that is also
factor
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, afactor
vector.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For mcc_vec()
, a single numeric
value (or NA
).
Relevant Level
There is no common convention on which factor level should
automatically be considered the "event" or "positive" result
when computing binary classification metrics. In yardstick
, the default
is to use the first level. To alter this, change the argument
event_level
to "second"
to consider the last level of the factor the
level of interest. For multiclass extensions involving one-vs-all
comparisons (such as macro averaging), this option is ignored and
the "one" level is always the relevant result.
Multiclass
mcc()
has a known multiclass generalization and that is computed
automatically if a factor with more than 2 levels is provided. Because
of this, no averaging methods are provided.
References
Giuseppe, J. (2012). "A Comparison of MCC and CEN Error Measures in Multi-Class Prediction". PLOS ONE. Vol 7, Iss 8, e41882.
Examples
library(dplyr)
data("two_class_example")
data("hpc_cv")
# Two class
mcc(two_class_example, truth, predicted)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 mcc binary 0.677
# Multiclass
# mcc() has a natural multiclass extension
hpc_cv %>%
filter(Resample == "Fold01") %>%
mcc(obs, pred)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 mcc multiclass 0.542
# Groups are respected
hpc_cv %>%
group_by(Resample) %>%
mcc(obs, pred)
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 mcc multiclass 0.542
#> 2 Fold02 mcc multiclass 0.521
#> 3 Fold03 mcc multiclass 0.602
#> 4 Fold04 mcc multiclass 0.519
#> 5 Fold05 mcc multiclass 0.520
#> 6 Fold06 mcc multiclass 0.494
#> 7 Fold07 mcc multiclass 0.461
#> 8 Fold08 mcc multiclass 0.538
#> 9 Fold09 mcc multiclass 0.459
#> 10 Fold10 mcc multiclass 0.498