average_precision()
is an alternative to pr_auc()
that avoids any
ambiguity about what the value of precision
should be when recall == 0
and there are not yet any false positive values (some say it should be 0
,
others say 1
, others say undefined).
It computes a weighted average of the precision values returned from
pr_curve()
, where the weights are the increase in recall from the previous
threshold. See pr_curve()
for the full curve.
Usage
average_precision(data, ...)
# S3 method for class 'data.frame'
average_precision(
data,
truth,
...,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
case_weights = NULL
)
average_precision_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
case_weights = NULL,
...
)
Arguments
- data
A
data.frame
containing the columns specified bytruth
and...
.- ...
A set of unquoted column names or one or more
dplyr
selector functions to choose which variables contain the class probabilities. Iftruth
is binary, only 1 column should be selected, and it should correspond to the value ofevent_level
. Otherwise, there should be as many columns as factor levels oftruth
and the ordering of the columns should be the same as the factor levels oftruth
.- truth
The column identifier for the true class results (that is a
factor
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, afactor
vector.- estimator
One of
"binary"
,"macro"
, or"macro_weighted"
to specify the type of averaging to be done."binary"
is only relevant for the two class case. The other two are general methods for calculating multiclass metrics. The default will automatically choose"binary"
or"macro"
based ontruth
.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- event_level
A single string. Either
"first"
or"second"
to specify which level oftruth
to consider as the "event". This argument is only applicable whenestimator = "binary"
. The default uses an internal helper that defaults to"first"
.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.- estimate
If
truth
is binary, a numeric vector of class probabilities corresponding to the "relevant" class. Otherwise, a matrix with as many columns as factor levels oftruth
. It is assumed that these are in the same order as the levels oftruth
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For average_precision_vec()
, a single numeric
value (or NA
).
Details
The computation for average precision is a weighted average of the precision
values. Assuming you have n
rows returned from pr_curve()
, it is a sum
from 2
to n
, multiplying the precision value p_i
by the increase in
recall over the previous threshold, r_i - r_(i-1)
.
$$AP = \sum (r_{i} - r_{i-1}) * p_i$$
By summing from 2
to n
, the precision value p_1
is never used. While
pr_curve()
returns a value for p_1
, it is technically undefined as
tp / (tp + fp)
with tp = 0
and fp = 0
. A common convention is to use
1
for p_1
, but this metric has the nice property of avoiding the
ambiguity. On the other hand, r_1
is well defined as long as there are
some events (p
), and it is tp / p
with tp = 0
, so r_1 = 0
.
When p_1
is defined as 1
, the average_precision()
and roc_auc()
values are often very close to one another.
Multiclass
Macro and macro-weighted averaging is available for this metric.
The default is to select macro averaging if a truth
factor with more
than 2 levels is provided. Otherwise, a standard binary calculation is done.
See vignette("multiclass", "yardstick")
for more information.
Relevant Level
There is no common convention on which factor level should
automatically be considered the "event" or "positive" result
when computing binary classification metrics. In yardstick
, the default
is to use the first level. To alter this, change the argument
event_level
to "second"
to consider the last level of the factor the
level of interest. For multiclass extensions involving one-vs-all
comparisons (such as macro averaging), this option is ignored and
the "one" level is always the relevant result.
See also
pr_curve()
for computing the full precision recall curve.
pr_auc()
for computing the area under the precision recall curve using
the trapezoidal rule.
Other class probability metrics:
brier_class()
,
classification_cost()
,
gain_capture()
,
mn_log_loss()
,
pr_auc()
,
roc_auc()
,
roc_aunp()
,
roc_aunu()
Examples
# ---------------------------------------------------------------------------
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
average_precision(two_class_example, truth, Class1)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 average_precision binary 0.947
# ---------------------------------------------------------------------------
# Multiclass example
# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%
filter(Resample == "Fold01") %>%
average_precision(obs, VF:L)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 average_precision macro 0.617
# Change the first level of `obs` from `"VF"` to `"M"` to alter the
# event of interest. The class probability columns should be supplied
# in the same order as the levels.
hpc_cv %>%
filter(Resample == "Fold01") %>%
mutate(obs = relevel(obs, "M")) %>%
average_precision(obs, M, VF:L)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 average_precision macro 0.617
# Groups are respected
hpc_cv %>%
group_by(Resample) %>%
average_precision(obs, VF:L)
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 average_precision macro 0.617
#> 2 Fold02 average_precision macro 0.625
#> 3 Fold03 average_precision macro 0.699
#> 4 Fold04 average_precision macro 0.685
#> 5 Fold05 average_precision macro 0.625
#> 6 Fold06 average_precision macro 0.656
#> 7 Fold07 average_precision macro 0.617
#> 8 Fold08 average_precision macro 0.659
#> 9 Fold09 average_precision macro 0.632
#> 10 Fold10 average_precision macro 0.611
# Weighted macro averaging
hpc_cv %>%
group_by(Resample) %>%
average_precision(obs, VF:L, estimator = "macro_weighted")
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 average_precision macro_weighted 0.750
#> 2 Fold02 average_precision macro_weighted 0.745
#> 3 Fold03 average_precision macro_weighted 0.794
#> 4 Fold04 average_precision macro_weighted 0.757
#> 5 Fold05 average_precision macro_weighted 0.740
#> 6 Fold06 average_precision macro_weighted 0.747
#> 7 Fold07 average_precision macro_weighted 0.751
#> 8 Fold08 average_precision macro_weighted 0.759
#> 9 Fold09 average_precision macro_weighted 0.714
#> 10 Fold10 average_precision macro_weighted 0.742
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
filter(Resample == "Fold01")
average_precision_vec(
truth = fold1$obs,
matrix(
c(fold1$VF, fold1$F, fold1$M, fold1$L),
ncol = 4
)
)
#> [1] 0.6173363