Compute the Brier score for a classification model.
Usage
brier_class(data, ...)
# S3 method for class 'data.frame'
brier_class(data, truth, ..., na_rm = TRUE, case_weights = NULL)
brier_class_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
Arguments
- data
A
data.frame
containing the columns specified bytruth
and...
.- ...
A set of unquoted column names or one or more
dplyr
selector functions to choose which variables contain the class probabilities. Iftruth
is binary, only 1 column should be selected, and it should correspond to the value ofevent_level
. Otherwise, there should be as many columns as factor levels oftruth
and the ordering of the columns should be the same as the factor levels oftruth
.- truth
The column identifier for the true class results (that is a
factor
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, afactor
vector.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.- estimate
If
truth
is binary, a numeric vector of class probabilities corresponding to the "relevant" class. Otherwise, a matrix with as many columns as factor levels oftruth
. It is assumed that these are in the same order as the levels oftruth
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For brier_class_vec()
, a single numeric
value (or NA
).
Details
The Brier score is analogous to the mean squared error in regression models. The difference between a binary indicator for a class and its corresponding class probability are squared and averaged.
This function uses the convention in Kruppa et al (2014) and divides the result by two.
Smaller values of the score are associated with better model performance.
Multiclass
Brier scores can be computed in the same way for any number of classes. Because of this, no averaging types are supported.
References
Kruppa, J., Liu, Y., Diener, H.-C., Holste, T., Weimar, C., Koonig, I. R., and Ziegler, A. (2014) Probability estimation with machine learning methods for dichotomous and multicategory outcome: Applications. Biometrical Journal, 56 (4): 564-583.
See also
Other class probability metrics:
average_precision()
,
classification_cost()
,
gain_capture()
,
mn_log_loss()
,
pr_auc()
,
roc_auc()
,
roc_aunp()
,
roc_aunu()
Examples
# Two class
data("two_class_example")
brier_class(two_class_example, truth, Class1)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 brier_class binary 0.106
# Multiclass
library(dplyr)
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
hpc_cv %>%
filter(Resample == "Fold01") %>%
brier_class(obs, VF:L)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 brier_class multiclass 0.202
# Groups are respected
hpc_cv %>%
group_by(Resample) %>%
brier_class(obs, VF:L)
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 brier_class multiclass 0.202
#> 2 Fold02 brier_class multiclass 0.215
#> 3 Fold03 brier_class multiclass 0.177
#> 4 Fold04 brier_class multiclass 0.204
#> 5 Fold05 brier_class multiclass 0.213
#> 6 Fold06 brier_class multiclass 0.214
#> 7 Fold07 brier_class multiclass 0.221
#> 8 Fold08 brier_class multiclass 0.209
#> 9 Fold09 brier_class multiclass 0.235
#> 10 Fold10 brier_class multiclass 0.218