pr_auc()
is a metric that computes the area under the precision
recall curve. See pr_curve()
for the full curve.
Usage
pr_auc(data, ...)
# S3 method for class 'data.frame'
pr_auc(
data,
truth,
...,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
case_weights = NULL
)
pr_auc_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
case_weights = NULL,
...
)
Arguments
- data
A
data.frame
containing the columns specified bytruth
and...
.- ...
A set of unquoted column names or one or more
dplyr
selector functions to choose which variables contain the class probabilities. Iftruth
is binary, only 1 column should be selected, and it should correspond to the value ofevent_level
. Otherwise, there should be as many columns as factor levels oftruth
and the ordering of the columns should be the same as the factor levels oftruth
.- truth
The column identifier for the true class results (that is a
factor
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, afactor
vector.- estimator
One of
"binary"
,"macro"
, or"macro_weighted"
to specify the type of averaging to be done."binary"
is only relevant for the two class case. The other two are general methods for calculating multiclass metrics. The default will automatically choose"binary"
or"macro"
based ontruth
.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- event_level
A single string. Either
"first"
or"second"
to specify which level oftruth
to consider as the "event". This argument is only applicable whenestimator = "binary"
. The default uses an internal helper that defaults to"first"
.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.- estimate
If
truth
is binary, a numeric vector of class probabilities corresponding to the "relevant" class. Otherwise, a matrix with as many columns as factor levels oftruth
. It is assumed that these are in the same order as the levels oftruth
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For pr_auc_vec()
, a single numeric
value (or NA
).
Multiclass
Macro and macro-weighted averaging is available for this metric.
The default is to select macro averaging if a truth
factor with more
than 2 levels is provided. Otherwise, a standard binary calculation is done.
See vignette("multiclass", "yardstick")
for more information.
Relevant Level
There is no common convention on which factor level should
automatically be considered the "event" or "positive" result
when computing binary classification metrics. In yardstick
, the default
is to use the first level. To alter this, change the argument
event_level
to "second"
to consider the last level of the factor the
level of interest. For multiclass extensions involving one-vs-all
comparisons (such as macro averaging), this option is ignored and
the "one" level is always the relevant result.
See also
pr_curve()
for computing the full precision recall curve.
Other class probability metrics:
average_precision()
,
brier_class()
,
classification_cost()
,
gain_capture()
,
mn_log_loss()
,
roc_auc()
,
roc_aunp()
,
roc_aunu()
Examples
# ---------------------------------------------------------------------------
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
pr_auc(two_class_example, truth, Class1)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 pr_auc binary 0.946
# ---------------------------------------------------------------------------
# Multiclass example
# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%
filter(Resample == "Fold01") %>%
pr_auc(obs, VF:L)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 pr_auc macro 0.611
# Change the first level of `obs` from `"VF"` to `"M"` to alter the
# event of interest. The class probability columns should be supplied
# in the same order as the levels.
hpc_cv %>%
filter(Resample == "Fold01") %>%
mutate(obs = relevel(obs, "M")) %>%
pr_auc(obs, M, VF:L)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 pr_auc macro 0.611
# Groups are respected
hpc_cv %>%
group_by(Resample) %>%
pr_auc(obs, VF:L)
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 pr_auc macro 0.611
#> 2 Fold02 pr_auc macro 0.620
#> 3 Fold03 pr_auc macro 0.689
#> 4 Fold04 pr_auc macro 0.680
#> 5 Fold05 pr_auc macro 0.620
#> 6 Fold06 pr_auc macro 0.650
#> 7 Fold07 pr_auc macro 0.607
#> 8 Fold08 pr_auc macro 0.650
#> 9 Fold09 pr_auc macro 0.628
#> 10 Fold10 pr_auc macro 0.603
# Weighted macro averaging
hpc_cv %>%
group_by(Resample) %>%
pr_auc(obs, VF:L, estimator = "macro_weighted")
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 pr_auc macro_weighted 0.746
#> 2 Fold02 pr_auc macro_weighted 0.743
#> 3 Fold03 pr_auc macro_weighted 0.789
#> 4 Fold04 pr_auc macro_weighted 0.754
#> 5 Fold05 pr_auc macro_weighted 0.737
#> 6 Fold06 pr_auc macro_weighted 0.743
#> 7 Fold07 pr_auc macro_weighted 0.748
#> 8 Fold08 pr_auc macro_weighted 0.756
#> 9 Fold09 pr_auc macro_weighted 0.711
#> 10 Fold10 pr_auc macro_weighted 0.737
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
filter(Resample == "Fold01")
pr_auc_vec(
truth = fold1$obs,
matrix(
c(fold1$VF, fold1$F, fold1$M, fold1$L),
ncol = 4
)
)
#> [1] 0.6109931