This function estimates one or more common performance estimates depending
on the class of truth
(see Value below) and returns them in a three
column tibble. If you wish to modify the metrics used or how they are used
see metric_set()
.
Usage
metrics(data, ...)
# S3 method for class 'data.frame'
metrics(data, truth, estimate, ..., na_rm = TRUE, options = list())
Arguments
- data
A
data.frame
containing the columns specified bytruth
,estimate
, and...
.- ...
A set of unquoted column names or one or more
dplyr
selector functions to choose which variables contain the class probabilities. Iftruth
is binary, only 1 column should be selected, and it should correspond to the value ofevent_level
. Otherwise, there should be as many columns as factor levels oftruth
and the ordering of the columns should be the same as the factor levels oftruth
.- truth
The column identifier for the true results (that is
numeric
orfactor
). This should be an unquoted column name although this argument is passed by expression and support quasiquotation (you can unquote column names).- estimate
The column identifier for the predicted results (that is also
numeric
orfactor
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- options
[deprecated]
No longer supported as of yardstick 1.0.0. If you pass something here it will be ignored with a warning.
Previously, these were options passed on to
pROC::roc()
. If you need support for this, use the pROC package directly.
Value
A three column tibble.
When
truth
is a factor, there are rows foraccuracy()
and the Kappa statistic (kap()
).When
truth
has two levels and 1 column of class probabilities is passed to...
, there are rows for the two class versions ofmn_log_loss()
androc_auc()
.When
truth
has more than two levels and a full set of class probabilities are passed to...
, there are rows for the multiclass version ofmn_log_loss()
and the Hand Till generalization ofroc_auc()
.When
truth
is numeric, there are rows forrmse()
,rsq()
, andmae()
.
Examples
# Accuracy and kappa
metrics(two_class_example, truth, predicted)
#> # A tibble: 2 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.838
#> 2 kap binary 0.675
# Add on multinomal log loss and ROC AUC by specifying class prob columns
metrics(two_class_example, truth, predicted, Class1)
#> # A tibble: 4 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 accuracy binary 0.838
#> 2 kap binary 0.675
#> 3 mn_log_loss binary 0.328
#> 4 roc_auc binary 0.939
# Regression metrics
metrics(solubility_test, truth = solubility, estimate = prediction)
#> # A tibble: 3 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rmse standard 0.722
#> 2 rsq standard 0.879
#> 3 mae standard 0.545
# Multiclass metrics work, but you cannot specify any averaging
# for roc_auc() besides the default, hand_till. Use the specific function
# if you need more customization
library(dplyr)
hpc_cv %>%
group_by(Resample) %>%
metrics(obs, pred, VF:L) %>%
print(n = 40)
#> # A tibble: 40 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 accuracy multiclass 0.726
#> 2 Fold02 accuracy multiclass 0.712
#> 3 Fold03 accuracy multiclass 0.758
#> 4 Fold04 accuracy multiclass 0.712
#> 5 Fold05 accuracy multiclass 0.712
#> 6 Fold06 accuracy multiclass 0.697
#> 7 Fold07 accuracy multiclass 0.675
#> 8 Fold08 accuracy multiclass 0.721
#> 9 Fold09 accuracy multiclass 0.673
#> 10 Fold10 accuracy multiclass 0.699
#> 11 Fold01 kap multiclass 0.533
#> 12 Fold02 kap multiclass 0.512
#> 13 Fold03 kap multiclass 0.594
#> 14 Fold04 kap multiclass 0.511
#> 15 Fold05 kap multiclass 0.514
#> 16 Fold06 kap multiclass 0.486
#> 17 Fold07 kap multiclass 0.454
#> 18 Fold08 kap multiclass 0.531
#> 19 Fold09 kap multiclass 0.454
#> 20 Fold10 kap multiclass 0.492
#> 21 Fold01 mn_log_loss multiclass 0.734
#> 22 Fold02 mn_log_loss multiclass 0.808
#> 23 Fold03 mn_log_loss multiclass 0.705
#> 24 Fold04 mn_log_loss multiclass 0.747
#> 25 Fold05 mn_log_loss multiclass 0.799
#> 26 Fold06 mn_log_loss multiclass 0.766
#> 27 Fold07 mn_log_loss multiclass 0.927
#> 28 Fold08 mn_log_loss multiclass 0.855
#> 29 Fold09 mn_log_loss multiclass 0.861
#> 30 Fold10 mn_log_loss multiclass 0.821
#> 31 Fold01 roc_auc hand_till 0.813
#> 32 Fold02 roc_auc hand_till 0.817
#> 33 Fold03 roc_auc hand_till 0.869
#> 34 Fold04 roc_auc hand_till 0.849
#> 35 Fold05 roc_auc hand_till 0.811
#> 36 Fold06 roc_auc hand_till 0.836
#> 37 Fold07 roc_auc hand_till 0.825
#> 38 Fold08 roc_auc hand_till 0.846
#> 39 Fold09 roc_auc hand_till 0.828
#> 40 Fold10 roc_auc hand_till 0.812