metric_set()
allows you to combine multiple metric functions together
into a new function that calculates all of them at once.
Details
All functions must be either:
Only numeric metrics
A mix of class metrics or class prob metrics
A mix of dynamic, integrated, and static survival metrics
For instance, rmse()
can be used with mae()
because they
are numeric metrics, but not with accuracy()
because it is a classification
metric. But accuracy()
can be used with roc_auc()
.
The returned metric function will have a different argument list depending on whether numeric metrics or a mix of class/prob metrics were passed in.
# Numeric metric set signature:
fn(
data,
truth,
estimate,
na_rm = TRUE,
case_weights = NULL,
...
)
# Class / prob metric set signature:
fn(
data,
truth,
...,
estimate,
estimator = NULL,
na_rm = TRUE,
event_level = yardstick_event_level(),
case_weights = NULL
)
# Dynamic / integrated / static survival metric set signature:
fn(
data,
truth,
...,
estimate,
na_rm = TRUE,
case_weights = NULL
)
When mixing class and class prob metrics, pass in the hard predictions
(the factor column) as the named argument estimate
, and the soft
predictions (the class probability columns) as bare column names or
tidyselect
selectors to ...
.
When mixing dynamic, integrated, and static survival metrics, pass in the
time predictions as the named argument estimate
, and the survival
predictions as bare column names or tidyselect
selectors to ...
.
If metric_tweak()
has been used to "tweak" one of these arguments, like
estimator
or event_level
, then the tweaked version wins. This allows you
to set the estimator on a metric by metric basis and still use it in a
metric_set()
.
Examples
library(dplyr)
# Multiple regression metrics
multi_metric <- metric_set(rmse, rsq, ccc)
# The returned function has arguments:
# fn(data, truth, estimate, na_rm = TRUE, ...)
multi_metric(solubility_test, truth = solubility, estimate = prediction)
#> # A tibble: 3 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rmse standard 0.722
#> 2 rsq standard 0.879
#> 3 ccc standard 0.937
# Groups are respected on the new metric function
class_metrics <- metric_set(accuracy, kap)
hpc_cv %>%
group_by(Resample) %>%
class_metrics(obs, estimate = pred)
#> # A tibble: 20 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 accuracy multiclass 0.726
#> 2 Fold02 accuracy multiclass 0.712
#> 3 Fold03 accuracy multiclass 0.758
#> 4 Fold04 accuracy multiclass 0.712
#> 5 Fold05 accuracy multiclass 0.712
#> 6 Fold06 accuracy multiclass 0.697
#> 7 Fold07 accuracy multiclass 0.675
#> 8 Fold08 accuracy multiclass 0.721
#> 9 Fold09 accuracy multiclass 0.673
#> 10 Fold10 accuracy multiclass 0.699
#> 11 Fold01 kap multiclass 0.533
#> 12 Fold02 kap multiclass 0.512
#> 13 Fold03 kap multiclass 0.594
#> 14 Fold04 kap multiclass 0.511
#> 15 Fold05 kap multiclass 0.514
#> 16 Fold06 kap multiclass 0.486
#> 17 Fold07 kap multiclass 0.454
#> 18 Fold08 kap multiclass 0.531
#> 19 Fold09 kap multiclass 0.454
#> 20 Fold10 kap multiclass 0.492
# ---------------------------------------------------------------------------
# If you need to set options for certain metrics,
# do so by wrapping the metric and setting the options inside the wrapper,
# passing along truth and estimate as quoted arguments.
# Then add on the function class of the underlying wrapped function,
# and the direction of optimization.
ccc_with_bias <- function(data, truth, estimate, na_rm = TRUE, ...) {
ccc(
data = data,
truth = !!rlang::enquo(truth),
estimate = !!rlang::enquo(estimate),
# set bias = TRUE
bias = TRUE,
na_rm = na_rm,
...
)
}
# Use `new_numeric_metric()` to formalize this new metric function
ccc_with_bias <- new_numeric_metric(ccc_with_bias, "maximize")
multi_metric2 <- metric_set(rmse, rsq, ccc_with_bias)
multi_metric2(solubility_test, truth = solubility, estimate = prediction)
#> # A tibble: 3 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rmse standard 0.722
#> 2 rsq standard 0.879
#> 3 ccc standard 0.937
# ---------------------------------------------------------------------------
# A class probability example:
# Note that, when given class or class prob functions,
# metric_set() returns a function with signature:
# fn(data, truth, ..., estimate)
# to be able to mix class and class prob metrics.
# You must provide the `estimate` column by explicitly naming
# the argument
class_and_probs_metrics <- metric_set(roc_auc, pr_auc, accuracy)
hpc_cv %>%
group_by(Resample) %>%
class_and_probs_metrics(obs, VF:L, estimate = pred)
#> # A tibble: 30 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 accuracy multiclass 0.726
#> 2 Fold02 accuracy multiclass 0.712
#> 3 Fold03 accuracy multiclass 0.758
#> 4 Fold04 accuracy multiclass 0.712
#> 5 Fold05 accuracy multiclass 0.712
#> 6 Fold06 accuracy multiclass 0.697
#> 7 Fold07 accuracy multiclass 0.675
#> 8 Fold08 accuracy multiclass 0.721
#> 9 Fold09 accuracy multiclass 0.673
#> 10 Fold10 accuracy multiclass 0.699
#> # ℹ 20 more rows