
Package index
-
sens()sens_vec()sensitivity()sensitivity_vec() - Sensitivity
-
spec()spec_vec()specificity()specificity_vec() - Specificity
-
recall()recall_vec() - Recall
-
precision()precision_vec() - Precision
-
j_index()j_index_vec() - J-index
-
f_meas()f_meas_vec() - F Measure
-
accuracy()accuracy_vec() - Accuracy
-
bal_accuracy()bal_accuracy_vec() - Balanced accuracy
-
detection_prevalence()detection_prevalence_vec() - Detection prevalence
-
roc_auc()roc_auc_vec() - Area under the receiver operator curve
-
roc_aunp()roc_aunp_vec() - Area under the ROC curve of each class against the rest, using the a priori class distribution
-
roc_aunu()roc_aunu_vec() - Area under the ROC curve of each class against the rest, using the uniform class distribution
-
pr_auc()pr_auc_vec() - Area under the precision recall curve
-
average_precision()average_precision_vec() - Area under the precision recall curve
-
gain_capture()gain_capture_vec() - Gain capture
-
mn_log_loss()mn_log_loss_vec() - Mean log loss for multinomial data
-
classification_cost()classification_cost_vec() - Costs function for poor classification
-
brier_class()brier_class_vec() - Brier score for classification models
-
rmse()rmse_vec() - Root mean squared error
-
rsq_trad()rsq_trad_vec() - R squared - traditional
-
mape()mape_vec() - Mean absolute percent error
-
smape()smape_vec() - Symmetric mean absolute percentage error
-
mase()mase_vec() - Mean absolute scaled error
-
rpiq()rpiq_vec() - Ratio of performance to inter-quartile
-
huber_loss()huber_loss_vec() - Huber loss
-
huber_loss_pseudo()huber_loss_pseudo_vec() - Psuedo-Huber Loss
-
poisson_log_loss()poisson_log_loss_vec() - Mean log loss for Poisson data
-
new_groupwise_metric() - Create groupwise metrics
-
demographic_parity() - Demographic parity
-
equalized_odds() - Equalized odds
-
equal_opportunity() - Equal opportunity
-
brier_survival()brier_survival_vec() - Time-Dependent Brier score for right censored data
-
brier_survival_integrated()brier_survival_integrated_vec() - Integrated Brier score for right censored data
-
roc_auc_survival()roc_auc_survival_vec() - Time-Dependent ROC AUC for Censored Data
-
concordance_survival()concordance_survival_vec() - Concordance index for right-censored data
-
roc_curve_survival() - Time-Dependent ROC surve for Censored Data
-
roc_curve() - Receiver operator curve
-
pr_curve() - Precision recall curve
-
gain_curve() - Gain curve
-
lift_curve() - Lift curve
-
metrics() - General Function to Estimate Performance
-
metric_set() - Combine metric functions
-
metric_tweak() - Tweak a metric function
-
conf_mat()tidy(<conf_mat>) - Confusion Matrix for Categorical Data
-
summary(<conf_mat>) - Summary Statistics for Confusion Matrices
-
numeric_metric_summarizer()class_metric_summarizer()prob_metric_summarizer()curve_metric_summarizer()dynamic_survival_metric_summarizer()static_survival_metric_summarizer()curve_survival_metric_summarizer() - Developer function for summarizing new metrics
-
check_numeric_metric()check_class_metric()check_prob_metric()check_dynamic_survival_metric()check_static_survival_metric() - Developer function for checking inputs in new metrics
-
yardstick_remove_missing()yardstick_any_missing() - Developer function for handling missing values in new metrics
-
dots_to_estimate()get_weights()finalize_estimator()finalize_estimator_internal()validate_estimator() - Developer helpers
-
new_class_metric()new_prob_metric()new_numeric_metric()new_dynamic_survival_metric()new_integrated_survival_metric()new_static_survival_metric() - Construct a new metric function
-
hpc_cv - Multiclass Probability Predictions
-
lung_surv - Survival Analysis Results
-
pathology - Liver Pathology Data
-
solubility_test - Solubility Predictions from MARS Model
-
two_class_example - Two Class Predictions