Skip to content

Classification Metrics

sens() sens_vec() sensitivity() sensitivity_vec()
Sensitivity
spec() spec_vec() specificity() specificity_vec()
Specificity
recall() recall_vec()
Recall
precision() precision_vec()
Precision
mcc() mcc_vec()
Matthews correlation coefficient
j_index() j_index_vec()
J-index
f_meas() f_meas_vec()
F Measure
accuracy() accuracy_vec()
Accuracy
kap() kap_vec()
Kappa
ppv() ppv_vec()
Positive predictive value
npv() npv_vec()
Negative predictive value
bal_accuracy() bal_accuracy_vec()
Balanced accuracy
detection_prevalence() detection_prevalence_vec()
Detection prevalence

Class Probability Metrics

roc_auc() roc_auc_vec()
Area under the receiver operator curve
roc_aunp() roc_aunp_vec()
Area under the ROC curve of each class against the rest, using the a priori class distribution
roc_aunu() roc_aunu_vec()
Area under the ROC curve of each class against the rest, using the uniform class distribution
pr_auc() pr_auc_vec()
Area under the precision recall curve
average_precision() average_precision_vec()
Area under the precision recall curve
gain_capture() gain_capture_vec()
Gain capture
mn_log_loss() mn_log_loss_vec()
Mean log loss for multinomial data
classification_cost() classification_cost_vec()
Costs function for poor classification

Regression Metrics

rmse() rmse_vec()
Root mean squared error
rsq() rsq_vec()
R squared
rsq_trad() rsq_trad_vec()
R squared - traditional
msd() msd_vec()
Mean signed deviation
mae() mae_vec()
Mean absolute error
mpe() mpe_vec()
Mean percentage error
mape() mape_vec()
Mean absolute percent error
smape() smape_vec()
Symmetric mean absolute percentage error
mase() mase_vec()
Mean absolute scaled error
ccc() ccc_vec()
Concordance correlation coefficient
rpiq() rpiq_vec()
Ratio of performance to inter-quartile
rpd() rpd_vec()
Ratio of performance to deviation
huber_loss() huber_loss_vec()
Huber loss
huber_loss_pseudo() huber_loss_pseudo_vec()
Psuedo-Huber Loss
iic() iic_vec()
Index of ideality of correlation
poisson_log_loss() poisson_log_loss_vec()
Mean log loss for Poisson data

Curve Functions

roc_curve()
Receiver operator curve
pr_curve()
Precision recall curve
gain_curve()
Gain curve
lift_curve()
Lift curve

Other Functions

metrics()
General Function to Estimate Performance
metric_set()
Combine metric functions
metric_tweak()
Tweak a metric function
conf_mat() tidy(<conf_mat>)
Confusion Matrix for Categorical Data
summary(<conf_mat>)
Summary Statistics for Confusion Matrices

Development Functions

metric_summarizer()
Developer function for summarizing new metrics
metric_vec_template()
Developer function for calling new metrics
get_weights() finalize_estimator() finalize_estimator_internal() dots_to_estimate() validate_estimator()
Developer helpers
new_class_metric() new_prob_metric() new_numeric_metric()
Construct a new metric function

Data Sets

hpc_cv
Multiclass Probability Predictions
pathology
Liver Pathology Data
solubility_test
Solubility Predictions from MARS Model
two_class_example
Two Class Predictions