Calculate the concordance correlation coefficient.
Usage
ccc(data, ...)
# S3 method for data.frame
ccc(
data,
truth,
estimate,
bias = FALSE,
na_rm = TRUE,
case_weights = NULL,
...
)
ccc_vec(truth, estimate, bias = FALSE, na_rm = TRUE, case_weights = NULL, ...)
Arguments
- data
A
data.frame
containing the columns specified by thetruth
andestimate
arguments.- ...
Not currently used.
- truth
The column identifier for the true results (that is
numeric
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, anumeric
vector.- estimate
The column identifier for the predicted results (that is also
numeric
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, anumeric
vector.- bias
A
logical
; should the biased estimate of variance be used (as is Lin (1989))?- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For ccc_vec()
, a single numeric
value (or NA
).
Details
ccc()
is a metric of both consistency/correlation and accuracy,
while metrics such as rmse()
are strictly for accuracy and metrics
such as rsq()
are strictly for consistency/correlation
References
Lin, L. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45 (1), 255-268.
Nickerson, C. (1997). A note on "A concordance correlation coefficient to evaluate reproducibility". Biometrics, 53(4), 1503-1507.
See also
Other numeric metrics:
huber_loss_pseudo()
,
huber_loss()
,
iic()
,
mae()
,
mape()
,
mase()
,
mpe()
,
msd()
,
poisson_log_loss()
,
rmse()
,
rpd()
,
rpiq()
,
rsq_trad()
,
rsq()
,
smape()
Other consistency metrics:
rpd()
,
rpiq()
,
rsq_trad()
,
rsq()
Other accuracy metrics:
huber_loss_pseudo()
,
huber_loss()
,
iic()
,
mae()
,
mape()
,
mase()
,
mpe()
,
msd()
,
poisson_log_loss()
,
rmse()
,
smape()
Examples
# Supply truth and predictions as bare column names
ccc(solubility_test, solubility, prediction)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 ccc standard 0.937
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(
replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE
),
.id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
group_by(resample) %>%
ccc(solubility, prediction)
metric_results
#> # A tibble: 10 × 4
#> resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 1 ccc standard 0.935
#> 2 10 ccc standard 0.937
#> 3 2 ccc standard 0.943
#> 4 3 ccc standard 0.956
#> 5 4 ccc standard 0.944
#> 6 5 ccc standard 0.925
#> 7 6 ccc standard 0.933
#> 8 7 ccc standard 0.922
#> 9 8 ccc standard 0.955
#> 10 9 ccc standard 0.940
# Resampled mean estimate
metric_results %>%
summarise(avg_estimate = mean(.estimate))
#> # A tibble: 1 × 1
#> avg_estimate
#> <dbl>
#> 1 0.939