Calculate the loss function for the Poisson distribution.
Usage
poisson_log_loss(data, ...)
# S3 method for class 'data.frame'
poisson_log_loss(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
poisson_log_loss_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)Arguments
- data
A
data.framecontaining the columns specified by thetruthandestimatearguments.- ...
Not currently used.
- truth
The column identifier for the true counts (that is
integer). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()functions, anintegervector.- estimate
The column identifier for the predicted results (that is also
numeric). As withtruththis can be specified different ways but the primary method is to use an unquoted variable name. For_vec()functions, anumericvector.- na_rm
A
logicalvalue indicating whetherNAvalues should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data. For_vec()functions, a numeric vector,hardhat::importance_weights(), orhardhat::frequency_weights().
Value
A tibble with columns .metric, .estimator,
and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For poisson_log_loss_vec(), a single numeric value (or NA).
Examples
count_truth <- c(2L, 7L, 1L, 1L, 0L, 3L)
count_pred <- c(2.14, 5.35, 1.65, 1.56, 1.3, 2.71)
count_results <- dplyr::tibble(count = count_truth, pred = count_pred)
# Supply truth and predictions as bare column names
poisson_log_loss(count_results, count, pred)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 poisson_log_loss standard 1.42
