Calculate the coefficient of determination using the traditional definition
of R squared using sum of squares. For a measure of R squared that is
strictly between (0, 1), see rsq()
.
Usage
rsq_trad(data, ...)
# S3 method for data.frame
rsq_trad(data, truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
rsq_trad_vec(truth, estimate, na_rm = TRUE, case_weights = NULL, ...)
Arguments
- data
A
data.frame
containing the columns specified by thetruth
andestimate
arguments.- ...
Not currently used.
- truth
The column identifier for the true results (that is
numeric
). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()
functions, anumeric
vector.- estimate
The column identifier for the predicted results (that is also
numeric
). As withtruth
this can be specified different ways but the primary method is to use an unquoted variable name. For_vec()
functions, anumeric
vector.- na_rm
A
logical
value indicating whetherNA
values should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data
. For_vec()
functions, a numeric vector,hardhat::importance_weights()
, orhardhat::frequency_weights()
.
Value
A tibble
with columns .metric
, .estimator
,
and .estimate
and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For rsq_trad_vec()
, a single numeric
value (or NA
).
Details
The two estimates for the
coefficient of determination, rsq()
and rsq_trad()
, differ by
their formula. The former guarantees a value on (0, 1) while the
latter can generate inaccurate values when the model is
non-informative (see the examples). Both are measures of
consistency/correlation and not of accuracy.
References
Kvalseth. Cautionary note about \(R^2\). American Statistician (1985) vol. 39 (4) pp. 279-285.
Examples
# Supply truth and predictions as bare column names
rsq_trad(solubility_test, solubility, prediction)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rsq_trad standard 0.879
library(dplyr)
set.seed(1234)
size <- 100
times <- 10
# create 10 resamples
solubility_resampled <- bind_rows(
replicate(
n = times,
expr = sample_n(solubility_test, size, replace = TRUE),
simplify = FALSE
),
.id = "resample"
)
# Compute the metric by group
metric_results <- solubility_resampled %>%
group_by(resample) %>%
rsq_trad(solubility, prediction)
metric_results
#> # A tibble: 10 × 4
#> resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 1 rsq_trad standard 0.870
#> 2 10 rsq_trad standard 0.878
#> 3 2 rsq_trad standard 0.891
#> 4 3 rsq_trad standard 0.913
#> 5 4 rsq_trad standard 0.889
#> 6 5 rsq_trad standard 0.857
#> 7 6 rsq_trad standard 0.872
#> 8 7 rsq_trad standard 0.852
#> 9 8 rsq_trad standard 0.915
#> 10 9 rsq_trad standard 0.883
# Resampled mean estimate
metric_results %>%
summarise(avg_estimate = mean(.estimate))
#> # A tibble: 1 × 1
#> avg_estimate
#> <dbl>
#> 1 0.882
# With uninformitive data, the traditional version of R^2 can return
# negative values.
set.seed(2291)
solubility_test$randomized <- sample(solubility_test$prediction)
rsq(solubility_test, solubility, randomized)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rsq standard 0.00199
rsq_trad(solubility_test, solubility, randomized)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 rsq_trad standard -1.01