pr_auc() is a metric that computes the area under the precision
recall curve. See pr_curve() for the full curve.
Usage
pr_auc(data, ...)
# S3 method for class 'data.frame'
pr_auc(
  data,
  truth,
  ...,
  estimator = NULL,
  na_rm = TRUE,
  event_level = yardstick_event_level(),
  case_weights = NULL
)
pr_auc_vec(
  truth,
  estimate,
  estimator = NULL,
  na_rm = TRUE,
  event_level = yardstick_event_level(),
  case_weights = NULL,
  ...
)Arguments
- data
- A - data.framecontaining the columns specified by- truthand- ....
- ...
- A set of unquoted column names or one or more - dplyrselector functions to choose which variables contain the class probabilities. If- truthis binary, only 1 column should be selected, and it should correspond to the value of- event_level. Otherwise, there should be as many columns as factor levels of- truthand the ordering of the columns should be the same as the factor levels of- truth.
- truth
- The column identifier for the true class results (that is a - factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For- _vec()functions, a- factorvector.
- estimator
- One of - "binary",- "macro", or- "macro_weighted"to specify the type of averaging to be done.- "binary"is only relevant for the two class case. The other two are general methods for calculating multiclass metrics. The default will automatically choose- "binary"or- "macro"based on- truth.
- na_rm
- A - logicalvalue indicating whether- NAvalues should be stripped before the computation proceeds.
- event_level
- A single string. Either - "first"or- "second"to specify which level of- truthto consider as the "event". This argument is only applicable when- estimator = "binary". The default uses an internal helper that defaults to- "first".
- case_weights
- The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in - data. For- _vec()functions, a numeric vector,- hardhat::importance_weights(), or- hardhat::frequency_weights().
- estimate
- If - truthis binary, a numeric vector of class probabilities corresponding to the "relevant" class. Otherwise, a matrix with as many columns as factor levels of- truth. It is assumed that these are in the same order as the levels of- truth.
Value
A tibble with columns .metric, .estimator,
and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For pr_auc_vec(), a single numeric value (or NA).
Multiclass
Macro and macro-weighted averaging is available for this metric.
The default is to select macro averaging if a truth factor with more
than 2 levels is provided. Otherwise, a standard binary calculation is done.
See vignette("multiclass", "yardstick") for more information.
Relevant Level
There is no common convention on which factor level should
automatically be considered the "event" or "positive" result
when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument
event_level to "second" to consider the last level of the factor the
level of interest. For multiclass extensions involving one-vs-all
comparisons (such as macro averaging), this option is ignored and
the "one" level is always the relevant result.
See also
pr_curve() for computing the full precision recall curve.
Other class probability metrics:
average_precision(),
brier_class(),
classification_cost(),
gain_capture(),
mn_log_loss(),
roc_auc(),
roc_aunp(),
roc_aunu()
Examples
# ---------------------------------------------------------------------------
# Two class example
# `truth` is a 2 level factor. The first level is `"Class1"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(two_class_example)
# Binary metrics using class probabilities take a factor `truth` column,
# and a single class probability column containing the probabilities of
# the event of interest. Here, since `"Class1"` is the first level of
# `"truth"`, it is the event of interest and we pass in probabilities for it.
pr_auc(two_class_example, truth, Class1)
#> # A tibble: 1 × 3
#>   .metric .estimator .estimate
#>   <chr>   <chr>          <dbl>
#> 1 pr_auc  binary         0.946
# ---------------------------------------------------------------------------
# Multiclass example
# `obs` is a 4 level factor. The first level is `"VF"`, which is the
# "event of interest" by default in yardstick. See the Relevant Level
# section above.
data(hpc_cv)
# You can use the col1:colN tidyselect syntax
library(dplyr)
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  pr_auc(obs, VF:L)
#> # A tibble: 1 × 3
#>   .metric .estimator .estimate
#>   <chr>   <chr>          <dbl>
#> 1 pr_auc  macro          0.611
# Change the first level of `obs` from `"VF"` to `"M"` to alter the
# event of interest. The class probability columns should be supplied
# in the same order as the levels.
hpc_cv %>%
  filter(Resample == "Fold01") %>%
  mutate(obs = relevel(obs, "M")) %>%
  pr_auc(obs, M, VF:L)
#> # A tibble: 1 × 3
#>   .metric .estimator .estimate
#>   <chr>   <chr>          <dbl>
#> 1 pr_auc  macro          0.611
# Groups are respected
hpc_cv %>%
  group_by(Resample) %>%
  pr_auc(obs, VF:L)
#> # A tibble: 10 × 4
#>    Resample .metric .estimator .estimate
#>    <chr>    <chr>   <chr>          <dbl>
#>  1 Fold01   pr_auc  macro          0.611
#>  2 Fold02   pr_auc  macro          0.620
#>  3 Fold03   pr_auc  macro          0.689
#>  4 Fold04   pr_auc  macro          0.680
#>  5 Fold05   pr_auc  macro          0.620
#>  6 Fold06   pr_auc  macro          0.650
#>  7 Fold07   pr_auc  macro          0.607
#>  8 Fold08   pr_auc  macro          0.650
#>  9 Fold09   pr_auc  macro          0.628
#> 10 Fold10   pr_auc  macro          0.603
# Weighted macro averaging
hpc_cv %>%
  group_by(Resample) %>%
  pr_auc(obs, VF:L, estimator = "macro_weighted")
#> # A tibble: 10 × 4
#>    Resample .metric .estimator     .estimate
#>    <chr>    <chr>   <chr>              <dbl>
#>  1 Fold01   pr_auc  macro_weighted     0.746
#>  2 Fold02   pr_auc  macro_weighted     0.743
#>  3 Fold03   pr_auc  macro_weighted     0.789
#>  4 Fold04   pr_auc  macro_weighted     0.754
#>  5 Fold05   pr_auc  macro_weighted     0.737
#>  6 Fold06   pr_auc  macro_weighted     0.743
#>  7 Fold07   pr_auc  macro_weighted     0.748
#>  8 Fold08   pr_auc  macro_weighted     0.756
#>  9 Fold09   pr_auc  macro_weighted     0.711
#> 10 Fold10   pr_auc  macro_weighted     0.737
# Vector version
# Supply a matrix of class probabilities
fold1 <- hpc_cv %>%
  filter(Resample == "Fold01")
pr_auc_vec(
   truth = fold1$obs,
   matrix(
     c(fold1$VF, fold1$F, fold1$M, fold1$L),
     ncol = 4
   )
)
#> [1] 0.6109931
