Skip to content

Ordered probability metrics evaluate predictions for ordered factor outcomes where the class probabilities should respect the natural ordering of the levels.

Input requirements

  • truth: ordered factor

  • estimate / ...: numeric columns containing class probabilities

Available metrics

ranked_prob_score()

Direction: minimize. Range: [0, 1]

See also

class-metrics for hard classification metrics

prob-metrics for class probability metrics

vignette("metric-types") for an overview of all metric types

Examples

# Example with an ordered factor
set.seed(1)
df <- data.frame(
  truth = ordered(sample(1:3, 20, replace = TRUE)),
  prob_1 = runif(20),
  prob_2 = runif(20),
  prob_3 = runif(20)
)
# Normalize probabilities
df[2:4] <- df[2:4] / rowSums(df[2:4])

ranked_prob_score(df, truth, prob_1:prob_3)
#> # A tibble: 1 × 3
#>   .metric           .estimator .estimate
#>   <chr>             <chr>          <dbl>
#> 1 ranked_prob_score multiclass     0.212