Skip to content

Class metrics evaluate hard classification predictions where both truth and estimate are factors. These metrics compare predicted classes directly against the true classes.

Input requirements

  • truth: factor

  • estimate: factor

Available metrics

accuracy()

Direction: maximize. Range: [0, 1]

bal_accuracy()

Direction: maximize. Range: [0, 1]

detection_prevalence()

Direction: maximize. Range: [0, 1]

f_meas()

Direction: maximize. Range: [0, 1]

fall_out()

Direction: minimize. Range: [0, 1]

j_index()

Direction: maximize. Range: [-1, 1]

kap()

Direction: maximize. Range: [-1, 1]

mcc()

Direction: maximize. Range: [-1, 1]

miss_rate()

Direction: minimize. Range: [0, 1]

npv()

Direction: maximize. Range: [0, 1]

ppv()

Direction: maximize. Range: [0, 1]

precision()

Direction: maximize. Range: [0, 1]

recall()

Direction: maximize. Range: [0, 1]

sens()

Direction: maximize. Range: [0, 1]

sensitivity()

Direction: maximize. Range: [0, 1]

spec()

Direction: maximize. Range: [0, 1]

specificity()

Direction: maximize. Range: [0, 1]

See also

prob-metrics for class probability metrics

ordered-prob-metrics for ordered probability metrics

vignette("metric-types") for an overview of all metric types

Examples

data("two_class_example")

head(two_class_example)
#>    truth      Class1       Class2 predicted
#> 1 Class2 0.003589243 0.9964107574    Class2
#> 2 Class1 0.678621054 0.3213789460    Class1
#> 3 Class2 0.110893522 0.8891064779    Class2
#> 4 Class1 0.735161703 0.2648382969    Class1
#> 5 Class2 0.016239960 0.9837600397    Class2
#> 6 Class1 0.999275071 0.0007249286    Class1

accuracy(two_class_example, truth, predicted)
#> # A tibble: 1 × 3
#>   .metric  .estimator .estimate
#>   <chr>    <chr>          <dbl>
#> 1 accuracy binary         0.838