These functions calculate the fall-out (false positive rate) of a
measurement system compared to a reference result (the "truth" or gold
standard). Fall-out is defined as 1 - specificity, or equivalently,
the proportion of negatives that are incorrectly classified as positives.
Usage
fall_out(data, ...)
# S3 method for class 'data.frame'
fall_out(
data,
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...
)
fall_out_vec(
truth,
estimate,
estimator = NULL,
na_rm = TRUE,
case_weights = NULL,
event_level = yardstick_event_level(),
...
)Arguments
- data
Either a
data.framecontaining the columns specified by thetruthandestimatearguments, or atable/matrixwhere the true class results should be in the columns of the table.- ...
Not currently used.
- truth
The column identifier for the true class results (that is a
factor). This should be an unquoted column name although this argument is passed by expression and supports quasiquotation (you can unquote column names). For_vec()functions, afactorvector.- estimate
The column identifier for the predicted class results (that is also
factor). As withtruththis can be specified different ways but the primary method is to use an unquoted variable name. For_vec()functions, afactorvector.- estimator
One of:
"binary","macro","macro_weighted", or"micro"to specify the type of averaging to be done."binary"is only relevant for the two class case. The other three are general methods for calculating multiclass metrics. The default will automatically choose"binary"or"macro"based onestimate.- na_rm
A
logicalvalue indicating whetherNAvalues should be stripped before the computation proceeds.- case_weights
The optional column identifier for case weights. This should be an unquoted column name that evaluates to a numeric column in
data. For_vec()functions, a numeric vector,hardhat::importance_weights(), orhardhat::frequency_weights().- event_level
A single string. Either
"first"or"second"to specify which level oftruthto consider as the "event". This argument is only applicable whenestimator = "binary". The default uses an internal helper that defaults to"first".
Value
A tibble with columns .metric, .estimator,
and .estimate and 1 row of values.
For grouped data frames, the number of rows returned will be the same as the number of groups.
For fall_out_vec(), a single numeric value (or NA).
Details
Fall-out is also known as the false positive rate (FPR) or the probability of false alarm.
When the denominator of the calculation is 0, fall-out is undefined.
This happens when both # true_negative = 0 and # false_positive = 0
are true, which means that there were no negatives. When computing binary
fall-out, a NA value will be returned with a warning. When computing
multiclass fall-out, the individual NA values will be removed, and the
computation will proceed, with a warning.
Suppose a 2x2 table with notation:
| Reference | ||
| Predicted | Positive | Negative |
| Positive | A | B |
| Negative | C | D |
The formula used here is:
$$\text{Fall-out} = \frac{B}{B + D}$$
Fall-out is a metric that should be minimized. The output ranges from 0 to 1, with 0 indicating that all actual negatives were correctly predicted as negative (no false positives).
Relevant Level
There is no common convention on which factor level should
automatically be considered the "event" or "positive" result
when computing binary classification metrics. In yardstick, the default
is to use the first level. To alter this, change the argument
event_level to "second" to consider the last level of the factor the
level of interest. For multiclass extensions involving one-vs-all
comparisons (such as macro averaging), this option is ignored and
the "one" level is always the relevant result.
Multiclass
Macro, micro, and macro-weighted averaging is available for this metric.
The default is to select macro averaging if a truth factor with more
than 2 levels is provided. Otherwise, a standard binary calculation is done.
See vignette("multiclass", "yardstick") for more information.
See also
Other class metrics:
accuracy(),
bal_accuracy(),
detection_prevalence(),
f_meas(),
j_index(),
kap(),
mcc(),
miss_rate(),
npv(),
ppv(),
precision(),
recall(),
sens(),
spec()
Other sensitivity metrics:
miss_rate(),
npv(),
ppv(),
sens(),
spec()
Examples
# Two class
data("two_class_example")
fall_out(two_class_example, truth, predicted)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 fall_out binary 0.207
# Multiclass
library(dplyr)
data(hpc_cv)
hpc_cv |>
filter(Resample == "Fold01") |>
fall_out(obs, pred)
#> # A tibble: 1 × 3
#> .metric .estimator .estimate
#> <chr> <chr> <dbl>
#> 1 fall_out macro 0.114
# Groups are respected
hpc_cv |>
group_by(Resample) |>
fall_out(obs, pred)
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 fall_out macro 0.114
#> 2 Fold02 fall_out macro 0.118
#> 3 Fold03 fall_out macro 0.101
#> 4 Fold04 fall_out macro 0.121
#> 5 Fold05 fall_out macro 0.119
#> 6 Fold06 fall_out macro 0.127
#> 7 Fold07 fall_out macro 0.134
#> 8 Fold08 fall_out macro 0.116
#> 9 Fold09 fall_out macro 0.133
#> 10 Fold10 fall_out macro 0.125
# Weighted macro averaging
hpc_cv |>
group_by(Resample) |>
fall_out(obs, pred, estimator = "macro_weighted")
#> # A tibble: 10 × 4
#> Resample .metric .estimator .estimate
#> <chr> <chr> <chr> <dbl>
#> 1 Fold01 fall_out macro_weighted 0.184
#> 2 Fold02 fall_out macro_weighted 0.185
#> 3 Fold03 fall_out macro_weighted 0.161
#> 4 Fold04 fall_out macro_weighted 0.197
#> 5 Fold05 fall_out macro_weighted 0.188
#> 6 Fold06 fall_out macro_weighted 0.205
#> 7 Fold07 fall_out macro_weighted 0.210
#> 8 Fold08 fall_out macro_weighted 0.186
#> 9 Fold09 fall_out macro_weighted 0.205
#> 10 Fold10 fall_out macro_weighted 0.199
# Vector version
fall_out_vec(
two_class_example$truth,
two_class_example$predicted
)
#> [1] 0.2066116
# Making Class2 the "relevant" level
fall_out_vec(
two_class_example$truth,
two_class_example$predicted,
event_level = "second"
)
#> [1] 0.120155
